Experimental Observations of CSR Bursts in Rings

Boris Podobedov, BNL

Workshop on Coherent Synchrotron Radiation in Storage Rings

Napa, CA, October 28–29, 2002

Scope, Outline and Caveats

- CSR: C is for Coherent -> *Power* ~ N²
- CSR bursts are reported at ALS, BESSY-II, MAX-I, NSLS VUV, SURF,....
- In this talk I attempt
 - Introduce experimental methods and review results
 - Stimulate a discussion
- I do NOT attempt

Brookhaven Science Associates
U.S. Department of Purply Chensive

References

ALS

- BROADBAND SELF-AMPLIFIED SPONTANEOUS COHERENT SYNCHROTRON RADIATION IN A STORAGE RING, J. Byrd et al, EPACO2
- OBSERVATION OF BROADBAND SELF-AMPLIFIED SPONTANEOUS COHERENT TERAHERZ SYNCHROTRON RADIATION IN A STORAGE RING, J. Byrd et al, to appear in PRL

BESSY-II

- COHERENT mm-RADIATION EXPERIMENTS AT THE BESSY II STORAGE RING, M. Abo-Bakr et al, EPACOO
- POWERFUL, STEADY STATE, COHERENT SYNCHROTRON RADIATION AT BESSY II, M. Abo-Bakr et al EPACO2
- STEADY-STATE FAR-INFRARED COHERENT SYNCHROTRON RADIATION DETECTED AT BESSY II, M. Abo-Bakr et al, PRL 88-25, 2002

MAX-1

 OBSERVATION OF COHERENTSYNCHROTRON RADIATION FROM A 1 MM ELECTRON BUNCH AT THE MAX-I STORAGE RING, A. Andersson et al, SPIE vol. 3775, 1999

NSLS VUV

- INVESTIGATION OF COHERENT EMISSION FROM THE NSLS VUV RING, G. L. Carr et al, PAC99
- TWO-BEAM INTERFERENCE OF LONG WAVELENGTH SYNCHROTRON RADIATION, G. L. Carr et al, PAC01
- LONGITUDINAL DENSITY MODULATION OF UNSTABLE BUNCHES EMITTING COHERENT IR, B. Podobedov et al, PAC01
- OBSERVATION OF COHERENT SYNCHROTRON RADIATION FROM THE NSLS VUV RING, G. L. Carr et al, NIM-A 463, 387, 2001
- ORIGIN OF LONGITUDINAL DENSITY MODULATION OF UNSTABLE BUNCHES IN THE NSLS VUV RING, B. Podobedov et al, EPAC02
- COHERENT MICROWAVE SYNCHROTRON RADIATION IN THE VUV RING, S. L. Kramer and B. Podobedov, EPAC02
- DIRECT OBSERVATION OF BEAM IMPEDANCE ABOVE CUT-OFF, S.L. Kramer, to appear in PRST-AB

SURF

- SIMULATION INVESTIGATIONS OF THE LONGITUDINAL SAWTOOTH INSTABILITY AT SURF, K. Harkay , K.-J. Kim, and N. Sereno, PAC01
- SPONTANEOUS COHERENT MICROWAVE EMISSIONS AND THE SAWTOOTH INSTABILITY IN A COMPACT STORAGE RING, U. Arp et al, PRST-AB 4, 054401, 20001

Ring Parameters

	ALS	BESSY-	MAX	NSLS VUV	SURF
Circumf.	197	240	32. 4	51	5.3
Effergy,	1.9	1.7	0.5	0.74	0.25
GeV Orms,	7	5	4	150	80
hande to CSR	8	4		12.5	67
cutoff,	10	15	3	200	90
mA					

Parameter space is infinite

These are just rough examples

Experimental Methods & Measurements Reported

		ALS	BESSY-	MAX	NSL	SURF
	experiment		II	-1	S	
Coherent Emissions	RF & MW techniques	X	X		X	X
	Interferometry	X	X	X	X	
	Polarization			X	X	
"e-beam"	BPM signal analysis				X	X
	Average Bunch Shape	X	X	X	X	X
	Shape Shape		X		X	X

Streak Cameras, etc

RF & MW Techniques for Emissions Studies

Advantages

■Time and Freq.
Domain

■Plenty of tools/hardware

■Extends to low frequencies

■Trivial pol msrmnt

Challenges

■Painful to cover large BW

■Expensive above 26 GHz

-Dynamic range & rise-

Products

Emission Bursts

NATIONAL LABORATORY

Interferometry

Advantages

- **■BW** extends into THz range
- **■**Convenient (no filter change)

Sensitive (but slow)

Challenges

- **■**Essentially freq. domain
- **■Slow** measurement
- ■Bursting data hard to interpret
- **■**Ratio calculations

lamellar grating interferometer at NSLS U12IR

spectral range ~1-100 cm⁻¹

0.25 cm⁻¹ resolution

"light pipe" and mirror optics

thermal IR detector (bolometer)

Interferometry Results

More Interferometry and MW

NSLS VUV U12IR data
G.L. Carr, S.L. Kramer et
al

- **■**Complex spectral structure
- Agreement of different techniques
- ■Fringe pattern due to photon reflections in the beam-pipe

■Ratios: pros and cons

Polarization Measurements

- ■Possible with interferometry or MW detection techniques
- ■Emissions are often polarized in the bending plane Ex/Ey>100
- **■**Consistent with **CSR**⁄
- ■Low frequency emissions at NSLS are not polarized – > CSR

"e-beam Measurements"

- **■**Previous measurements characterize "very -FIR photons" emitted from the beamline
- **■What's happening with e-beam?**
- **■BPM signal analysis**
 - **■RF/MW** techniques applicable
 - **■**Typically run out of BW
- ■Average bunch shape measurements
- **■Instantaneous bunch shape (resolve bursts)**

NSLS VUV Ring Streak Camera Results

■ Two 18-turn-average

- Frequency agrees with $Z_{II}(\omega)$

300 profile Fourier Transform averages

Search for higher frequency modulation is still in progress
 BROOKHAVEN NATIONAL LABORATORY

Conclusion

- No one-size-fits-all experimental technique
- Vastly different rings yet amazing similarities in burst structure, spectra, parameter dependence
- Reported P_{coh}/P_{incoh}~10⁴
- **Spectral content may be complex**
- Low frequency coherent emissions are not CSR
- Some evidence of non-CSR impedance causing low frequency emissions/beam Brookhaven Science Associates U.S. Departmentalion

Final Thoughts

New SLC DR

■Coherent bursts go together with the sawtooth instability

■There is always a non-bursting region at higher intensity

■Not obvious that low α and micro-Amps of I_b is Brookhavenesydeaget "steady state" CSR U.S. Department of Energy

